Pituitary adenylate cyclase-activating polypeptide-27 causes a biphasic chronotropic effect and atrial fibrillation in autonomically decentralized, anesthetized dogs.
نویسندگان
چکیده
We investigated the effects of a neuropeptide, pituitary adenylate cyclase-activating polypeptide- (PACAP) 27, on the sinoatrial nodal pacemaker activity and the mechanisms for the cardiac effects of PACAP-27 in the autonomically decentralized heart of the anesthetized dog. PACAP-27 (0.01-0.3 nmol) injected into the sinus node artery increased followed by decreased sinus rate. PACAP-27 (0.1 and 0.3 nmol) caused atrial fibrillation spontaneously. After atropine, PACAP-27 never decreased but only increased sinus rate as did vasoactive intestinal peptide. However, propranolol did not affect the negative and positive chronotropic effects. Tetrodotoxin but not hexamethonium abolished the negative chronotropic response to PACAP-27 in atropine nontreated dogs, and tetrodotoxin also inhibited the positive chronotropic response by 34% in atropine-treated dogs. In atropine- and propranolol-treated dogs, positive chronotropic responses to PACAP-27 were inhibited by PACAP-(6-27), a PACAP receptor antagonist but not by vasoactive intestinal peptide (10-28), a vasoactive intestinal peptide receptor antagonist. These results indicate that PACAP-27 causes the negative chronotropic effect through the postganglionic parasympathetic nerve activation and it produces the positive chronotropic effect mediated by PACAP receptors with an activation of non-adrenergic, nonvasoactive intestinal peptide-ergic nerves at least in part in the dog heart. Atropine and tetrodotoxin abolished atrial fibrillation induced by PACAP-27 but other blockers did not. These results suggest that neurally released acetylcholine induced by PACAP-27 participates in the induction of atrial fibrillation.
منابع مشابه
Effects of pituitary adenylate cyclase-activating polypeptide on canine atrial electrophysiology.
We hypothesized that pituitary adenylate cyclase-activating polypeptide (PACAP) activates intracardiac postganglionic parasympathetic nerves and has a different effect than cervical vagal stimulation. We measured effective refractory period (ERP) and conduction velocity at four atrial sites [high right atrium (HRA), low right atrium (LRA), high left atrium (HLA), and low left atrium (LLA)] and ...
متن کاملDifferential activation of guinea pig intrinsic cardiac neurons by the PAC1 agonists maxadilan and pituitary adenylate cyclase-activating polypeptide 27 (PACAP27).
Pituitary adenylate cyclase-activating polypeptide (PACAP) evokes tachycardia followed by a larger cholinergic bradycardia in isolated guinea pig hearts. We used the selective PAC1 receptor agonist maxadilan and vasoactive intestinal polypeptide (VIP) to test the hypothesis that PACAP27-evoked tachycardia and bradycardia are mediated by VPAC and PAC1 receptors, respectively. Chronotropic action...
متن کاملRole of L-type Ca2+ channel in PACAP-induced adrenal catecholamine release in vivo.
The aim of the present study was to investigate whether the dihydropyridine-sensitive L-type Ca2+ channel is operative in adrenal catecholamine (CA) secretion induced by a novel neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), in anesthetized dogs. Plasma CA concentrations in adrenal venous and aortic blood were determined by a high-performance liquid chromatography met...
متن کاملRegulation of atrial natriuretic peptide secretion by cholinergic and PACAP neurons of the gastric antrum.
Atrial natriuretic peptide (ANP) released from enterochromaffin cells helps regulate antral somatostatin secretion, but the mechanisms regulating ANP secretion are not known. We superfused rat antral segments with selective neural agonists/antagonists to identify the neural pathways regulating ANP secretion. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) stimulated ANP secretion...
متن کاملPituitary adenylate cyclase-activating polypeptide activates K(ATP) current in rat atrial myocytes.
Because the electrophysiological effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on the heart are little known, we studied the regulation of the atrial ATP-sensitive K(+) (K(ATP)) current by PACAP on primary cultured neonatal rat atrial myocytes. PACAP-38 stimulates cAMP production with EC(50) = 0.28 nmol/l (r = 0.92, P < 0.02). PACAP-38 and PACAP-27 (10 nmol/l) have simil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 283 2 شماره
صفحات -
تاریخ انتشار 1997